The Reductive Activation of CO2 Across a Ti=Ti Double Bond: Synthetic, Structural, and Mechanistic Studies
نویسندگان
چکیده
The reactivity of the bis(pentalene)dititanium double-sandwich compound Ti2Pn†2 (1) (Pn† = 1,4-{SiiPr3}2C8H4) with CO2 is investigated in detail using spectroscopic, X-ray crystallographic, and computational studies. When the CO2 reaction is performed at -78 °C, the 1:1 adduct 4 is formed, and low-temperature spectroscopic measurements are consistent with a CO2 molecule bound symmetrically to the two Ti centers in a μ:η2,η2 binding mode, a structure also indicated by theory. Upon warming to room temperature the coordinated CO2 is quantitatively reduced over a period of minutes to give the bis(oxo)-bridged dimer 2 and the dicarbonyl complex 3. In situ NMR studies indicated that this decomposition proceeds in a stepwise process via monooxo (5) and monocarbonyl (7) double-sandwich complexes, which have been independently synthesized and structurally characterized. 5 is thermally unstable with respect to a μ-O dimer in which the Ti-Ti bond has been cleaved and one pentalene ligand binds in an η8 fashion to each of the formally TiIII centers. The molecular structure of 7 shows a "side-on" bound carbonyl ligand. Bonding of the double-sandwich species Ti2Pn2 (Pn = C8H6) to other fragments has been investigated by density functional theory calculations and fragment analysis, providing insight into the CO2 reaction pathway consistent with the experimentally observed intermediates. A key step in the proposed mechanism is disproportionation of a mono(oxo) di-TiIII species to yield di-TiII and di-TiIV products. 1 forms a structurally characterized, thermally stable CS2 adduct 8 that shows symmetrical binding to the Ti2 unit and supports the formulation of 4. The reaction of 1 with COS forms a thermally unstable complex 9 that undergoes scission to give mono(μ-S) mono(CO) species 10. Ph3PS is an effective sulfur transfer agent for 1, enabling the synthesis of mono(μ-S) complex 11 with a double-sandwich structure and bis(μ-S) dimer 12 in which the Ti-Ti bond has been cleaved.
منابع مشابه
Theoretical study of reduced benzopyran to CO2 by rTiO2-NP
In this study, catalyst of rutile titanium dioxide nanoparticles (rTiO2-NP) has been investigated for the removal and reduction of unburned hydrocarbons as benzopyran. To evaluate and calculate the thermodynamic properties of this aim, pollutants are closed to the nanoparticles and converted them into other products and the carbon dioxide molecules are simulated in the 12th steps. The geometric...
متن کاملReductive deoxygenation of CO2 by a bimetallic titanium bis(pentalene) complex.
The bimetallic bis(pentalene) complex (μ:η(5),η(5)-Pn(†))2Ti2 reductively splits CO2 to form a bis(oxo) bridged dimer [(η(8)-Pn(†))Ti(μ-O)]2, in which the Ti-Ti bond has been cleaved, and the dicarbonyl complex (μ:η(5),η(5)-Pn(†))2[Ti(CO)]2.
متن کاملTheoretical study of reduced benzopyran to CO2 by rTiO2-NP
In this study, catalyst of rutile titanium dioxide nanoparticles (rTiO2-NP) has been investigated for the removal and reduction of unburned hydrocarbons as benzopyran. To evaluate and calculate the thermodynamic properties of this aim, pollutants are closed to the nanoparticles and converted them into other products and the carbon dioxide molecules are simulated in the 12th steps. The geometric...
متن کاملDouble CO2 activation by 14-electron η(8)-permethylpentalene titanium dialkyl complexes.
The novel 14 electron species η(8)-Pn*TiR2 (Pn* = C8Me6; R = Me, CH2Ph) have been synthesised and spectroscopically and structurally characterised. Subsequent reaction with CO2 leads to the activation and double insertion of CO2 into both Ti-alkyl bonds to form the electronically saturated η(8)-Pn*Ti(κ(2)-O2CR)2 (R = Me, CH2Ph) complexes.
متن کاملA heterobimetallic complex featuring a Ti–Co multiple bond and its application to the reductive coupling of ketones to alkenes† †Electronic supplementary information (ESI) available: Experimental procedures, additional spectroscopic data for 1–4, and computational details of 2 and 3. CCDC 1037714–1037716. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c4sc03772c Click here for additional data file. Click here for additional data file.
To explore metal–metal multiple bonds between first row transition metals, Ti/Co complexes supported by two phosphinoamide ligands have been synthesized and characterized. The Ti metalloligand Cl2Ti(XylNP Pr2)2 (1) was treated with CoI2 under reducing conditions, permitting isolation of the Ti/ Co complex [(m-Cl)Ti(XylNPPr2)2CoI]2 (2). One electron reduction of complex 2 affords ClTi(XylNPPr2)2...
متن کامل